As early as the 1980s, when optical communication was just emerging, developed countries such as the United States, the United Kingdom, and Japan had already carried out theoretical research and experiments on coherent optical communication and achieved good results.
For example, in 1989 and 1990, AT&T and Bell in the US successively carried out a 1.7Gbps FSK on-site coherence transmission experiment with 1.3μm and 1.55μm wavelengths without any relay between the Rolling Creek ground station and Sunbury hub in Pennsylvania in 1989 and 1990, and the transmission distance reaches 35 kilometers.
Later, in the 1990s, experts found that the increasingly mature EDFA (Erbium-Doped Fiber Amplifier) and WDM (Wavelength Division Multiplexing) technologies could solve the problems of relay transmission and capacity expansion of optical communication more simply and effectively. As a result, the technical research of coherent optical communication has been neglected.
Around 2008, with the outbreak of the mobile Internet, the data traffic of the communication network increased rapidly, and the pressure on the backbone network increased sharply. At this time, the potential of EDFA and WDM technology has become smaller. Optical communication manufacturers urgently need to find new technological breakthroughs, improve the transmission capacity of optical communication, meet user needs, and relieve pressure.
Manufacturers found that with the maturity of digital signal processing (DSP), optical device manufacturing, and other technologies, coherent optical communication based on these technologies is just a good choice to break the technical bottleneck of long-distance high-bandwidth optical fiber communication. As a result, it is logical that coherent optical communication has moved from behind the scenes to the front of the stage.
HTF can help you design coherent 400G/200G/100G DWDM/OTN solution, DWDM Single lamda 100G/200G/400G Dual fiber/Single fiber Ultra long distance transmission.
没有评论:
发表评论